

400 MHz RF System: Power

O. Brunner AB/RF

G. Pecheur
J. Pradier
C. Nicou
B.Lambert
P. Martinez
V. Rodel
E. Ciapala

L. Arnaudon

S. Girod

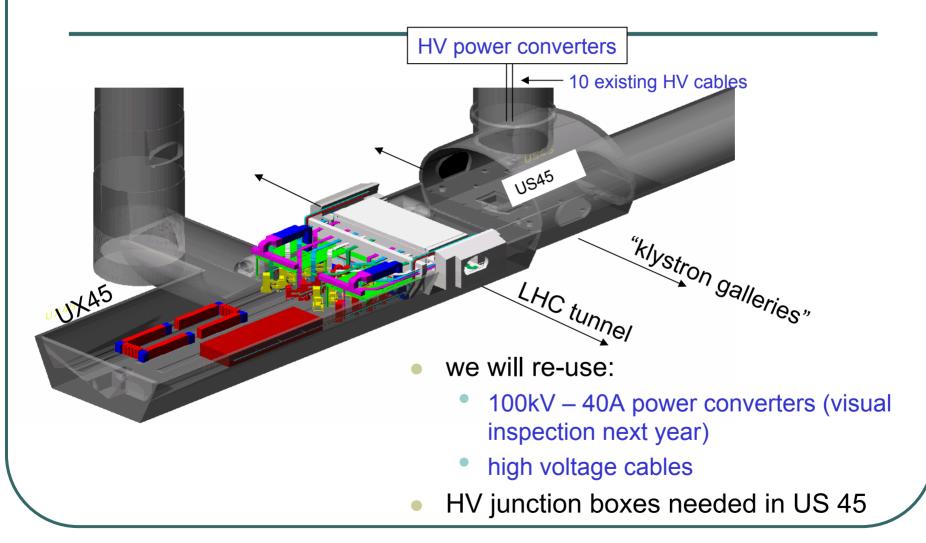
J.C. Perrier

C. Ruivet

D. Valuch

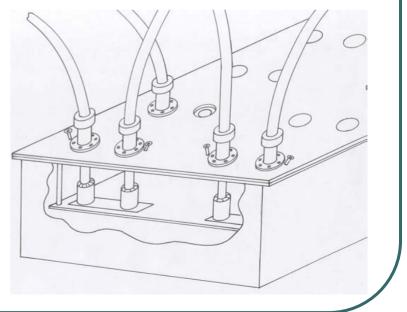
T. Linnecar

summary


• ...along the power line...

- from the surface to UX45
- HV bunkers & their equipment
- klystrons, circulators
- wave guide system

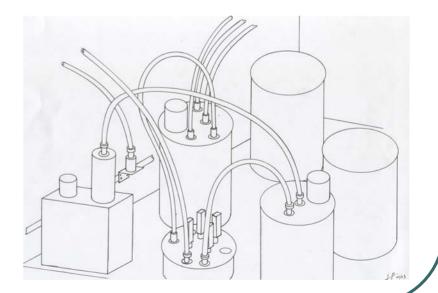
...status, integration, difficulties,...


- installation planning
- conclusions

from the surface to the tunnel

HV junction boxes

- why?:
 - the idea is to avoid pulling new cables from the surface → HV bunkers (UX45)
 - elegant, simple & cheap solution, based on modified LEP RF oil tanks
 - US45 → UX45 (HV bunkers): 10 new cables to be pulled
- status:
 - \checkmark integration of junction boxes
 - getting TIS approval (under discussion)
 - new HV cables to be integrated


HV bunkers (UX45)

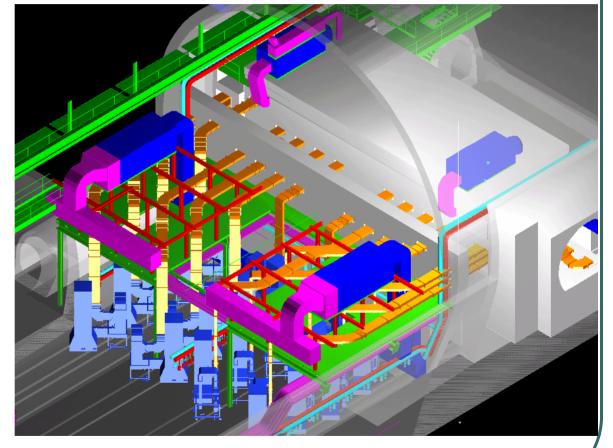
HV bunkers

- 4 HV bunkers to be built (end 2004)
 - 1one HV bunker per HV power supply (4 klystrons per p.s.)
- equipment in modified LEP RF HV oil tanks
 - 4 modulators, 1 fast protection system, 1 HV commutator, 2 smoothing capacitors

status

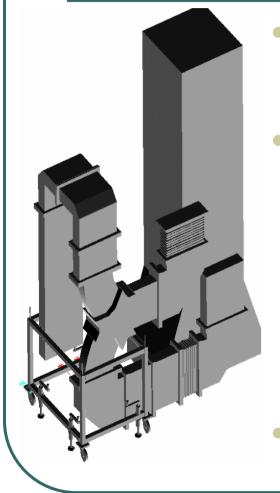
- ✓ integration
- ✓ TIS approval
- to be built end of 2004

HV bunker equipment


- what can not be seen at a first glance:
 - new equipment in the oil tanks!
 - efforts were made to improve performance, reliability & diagnostic:
 - remote controlled HV commutator
 - klystron modulators: new optical fiber system for tetrode control
 - crowbar: new fast spike detection system
 - silicon oil instead of mineral oil:
 - less safety constraints (no expensive fire protection systems)
 - less maintenance work

HV bunker equipment – status

- prototypes:
 - all prototype built, tested and validated in klystron test stand
 - specific tests to be made in SM18 test stand with klystrons in parallel
 - "series" production:
 - HV equipment developed & built at CERN
 - production has started
 - ordering of sensitive/expensive components:
 - 9 tetrodes to be ordered next year
 - 3 thyratrons to come in 2004-2005
 - all fully equipped HV cables at CERN at the end of 2003


UX45 – RF power zone

- integration done by RF group:
 - shielding wall
 - platforms
 - HV bunkers
 - electronic racks
 - water cooling distribution
 - HV earthing system
 - control system
 - wave guides, incl. wave guide supports
 - ventilation
 - cabling: cable trays, RF cables, HV cables, etc

very crowded area!!! still lots of problems to be solved...

klystron, circulator & load chassis

independent & compact:

- klystron (vertical)
- circulator & load (modified LEP circ)
- "plug & play" chassis:
 - fully cabled and equipped, including:
 - control system
 - air/water cooling equipment, ionic pump PS, ...
 - only few connection with the external world
 - most of tests (and work!) done prior to installation
 - less installation work
 - higher reliability
 - "easier" replacement in case of problem
- tested in B112 & SM18 tests stand

the LHC klystrons

330kW CW klystrons:

- built by Thales
 - 20 klystrons ordered (2001)
 - 6 klystrons already tested and accepted at CERN
 - delivery schedule: 1 klystron / 2 months
 - all klystrons at CERN Summer 2005

Critical parameters:

- short group delay < 150ns
 - crucial for control loops
- klystron cavity 1, 2 and 4 frequencies must be the same for all klystron
 - very important for low level system (high gain loops)

Klystron equipment:

- ionic pump, focus p.s., RF drivers, water cooling syst.:
 - modified LEP equipment (big savings)
 - old equipment: gradual replacement program to be implemented
- power meters, arc detectors, etc
 - new design to improve reliability

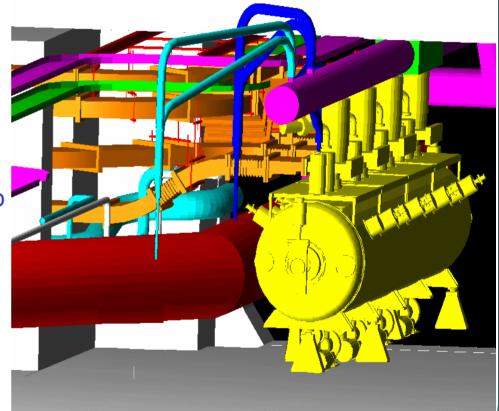
circulators and loads

330kW ferrite junction circulators and loads

- manufacturer: AFT (Germany)
- 18 circulators and loads ordered
 - prototype tested and accepted at CERN
 - next delivery: November 2003
 - few months late compare to schedule due to a modification of load design (water leak inside WG after shockwave)
 - next load will be intensively tested
 - investigating protections against shockwaves in water cooling system
 - all circ & load at CERN mid-2004
- preparation of chassis ongoing (at CERN)

power control system

 \rightarrow


- The LHC RF control systems is based on Programmable Logic Controllers (PLC) with remote i/o:
 - distributed as close as possible to the signal sources
 - minimize the number & length of cables less installation work
 - improve the signal quality higher reliability
 - integration of controls part difficult (klystron & cavity)

fine tuning of integration needed

- big efforts made to improve reliability & diagnostic: new interlock system, ...
- first versions of PLC & RF specialist software are used in the test stands

wave guide system

- 1 klystron per cavity:
 - re-use LEP half height wave guide
 - storage is an issue!
 - efforts made to minimize the number of bends, avoid chicanes,..., susceptible to trap higher order modes (risk of arcing)
 - critical areas above "external" modules where installation will be extremely difficult
 - to be checked out very carefully

installation planning in UX45

- civil engineering:
- → second half 2004

- shielding wall
- platform
- HV bunkers
- RF services:
- → March October 2005
- electronic racks
- water cooling distribution
- klystron & HV bunker earthing system
- ventilation
- cabling: cable trays, RF cables, HV cables, etc
- RF equipment:
- → October 2005 March 2006 !!!
- HV bunker equipment
- klystrons, circulators
- waveguides
- control system

conclusions (1)

technical work is going ok

- no major problem with HV equipment
 - specific tests still to be done in SM18
- 6/20 klystrons tested & accepted at CERN
 - delivery schedule: 1klystron every 2 months
- first circulator & load tested & accepted
 - spring 2004: all 16 circulators & load at CERN
- control system
 - intensive tests in SM18

integration in UX45

- civil engineering
 - ✓ shielding wall, HV bunkers
 - platforms to be designed & integrated

conclusions (2)

- cabling
 - HV cabling, RF & control cabling:
 - integration in progress, cable trays defined
 - new HV cables to be integrated (US45-UX45)
- water cooling
 - fairly well advanced: some details to be discussed with ST/CV
 - re using LEP RF equipment large savings
- waveguide system
 - UX45: well defined
 - big difficulties near the "external" modules!!!